
Journal of Sound and Vibration (1998) 209(2), 265–298

BOUNDARY STABILIZATION OF DONNELL’S
SHALLOW CIRCULAR CYLINDRICAL SHELL

G. C

Department of Mathematics, Texas A&M University, College Station, Texas 77843, U.S.A.

M. P. C

Department of Mathematics and Computer Science, Fairfield University, Fairfield,
Connecticut 06430, U.S.A.



K. L

Department of Applied Mathematics, Zhejiang University, Hangzhou 310027, China

(Received 18 November 1996, and in final form 16 June 1997)

Donnell’s model of a shallow (and thin) circular cylindrical shell is formulated by a
system of three partial differential equations, only one of which contains explicit time
dependence. It constitutes one of the most important linear shell models, yet problems
associated with its boundary stabilization and control have not been carefully studied. In
this paper, we set up the functional–analytic framework, derive dissipative boundary
conditions, and determine the infinitesimal generator of the semigroup of evolution. Using
a frequency domain method along with energy multipliers, we establish the result of
uniform exponential decay of energy under geometric conditions identical to those of the
case of a thin Kirchhoff plate. Our approach, incorporating energy multipliers in the
frequency domain with a contrapositive argument, appears to be new. It has the beneficial
effect of avoiding the necessity to estimate lower order terms when the shell radius is not
large. We also consider the case in which the domains contain angular corners; special
treatment is required to handle the additional energy contributed by the twisting moments
at corner points. Under the assumption of sufficient regularity, uniform exponential decay
of energy is also established for such domains.
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1. INTRODUCTION

In this paper, we study the boundary stabilization of Donnell’s thin circular cylindrical
shell.

The basic objects in the study of vibration dynamics in engineering are springs, strings,
cables, rods, beams, membranes, plates and shells. The last three among them, namely,
membranes, plates and shells, constitute perhaps the most prevalent ones with
multi-dimensional space settings. The membrane is modelled by the second order wave
equation, the analysis and control of which have been rather thoroughly investigated
during the past three decades. Next up in the level of mathematical complexity are the
various plate models, at least in the sense of the order of partial differential equations
involved because they normally (or essentially) have order four. Rapid progress on the
boundary control, observation and stabilization of plates has been made during the past
decade; see the books by Lagnese [1]. Lagnese and Lions [2] and the references therein.
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Now, let us talk about shells. They are as ubiquitous as plate structures in mechanical
and civil engineering: aircraft fuselage, ship hulls, pressure vessels, curved roofs and domes,
to mention a few. From the modelling point of view, the major difference between plates
and shells is that the geometrical effects of curvature are significant and have to be taken
into account in the mathematical formulation of shells. This results in systems of coupled
partial differential equations of even higher order, essentially e8, cf. reference [11, section
2], for a majority of shallow or thin shells of spherical, conical and cylindrical shapes. For
this reason, the mathematical analysis and control of shell models seems to contain
almost all of the challenges encountered in the leap from the wave equation to the plate
equations.

Even though it has been well recognized that many general techniques in the theory of
distributed parameter control are applicable to shell models, so far we are able to locate
only a small number of published references on this subject. We may first mention the work
by Deng [3], who studied the boundary control of an axial-symmetric thin circular
cylindrical shell. More recently, we have also noticed the papers by Delfour and Zolesio
[4] and Lasiecka, Triggiani and Valente [5]. The primary emphasis in reference [4] is on
functional–analytic setting and well-posedness (without any control), while in references
[3] and [5], axial/radial symmetries have been used to render the problems to one space
dimension. It would certainly be more interesting to treat shell stabilization/control
problems in the natural two-dimensional space setting without the axial/radial symmetry
assumptions.

In our opinion, the lack of published work presenting systematic mathematical
treatments of boundary stabilization and control of shells may be largely attributed to the
complexity, and the ensuing somewhat intractable nature, of the shell models involved.
Admittedly, the stress–strain theory of shells with various geometries is well developed,
as can be read from the large number of shell books in the literature. Thus, it would appear
straightforward to derive the PDEs based upon the stress and strain relations (or,
equivalently, from the variational principle). This is not exactly so—it is invariably the rule
that further ad hoc assumptions have to be made to adjust the model by judiciously
discarding a few terms because they may not be significant, so that a physically reasonable
and acceptable PDE system is obtained that is also ‘‘sufficiently mathematically pleasant’’.
Even for the shallow or thin circular cylindrical shell, the reader may find several such ad
hoc assumptions, as reflected in/associated with the modeller’s names of Donnell, Flügge,
Timoshenko, Vlasov, Washizu–Goldenveizer, etc. [6]. As a matter of fact, in the authors’
struggle to formulate a few such shell PDE systems for treatment, Donnell’s shallow
circular cylindrical shell model is the only one for which we have achieved success thus
far. This model has perhaps the strongest mathematical resemblance to the Kirchhoff thin
plate model and therefore, in our opinion, its study constitutes a ‘‘natural first leap’’ from
plates to shells. We will provide a brief description of the derivations in section 2.

In section 3, we derive dissipative boundary conditions and provide the
functional–analytic setting for the PDE system.

One of the major challenges in studying the shell boundary stabilization problem is the
estimation of some lower order terms when the radius R of the circular cylindrical shell
is not large, a situation reminiscent of one encountered in Lagnese [7] (and in Chen [8]),
where some lower order terms on the boundary need to be absorbed by other negative
terms. Here, in section 4, we adopt the frequency domain method along with energy
multipliers to prove the uniform exponential decay of energy of Donnell’s shallow shell
subject to certain geometric conditions on the domain, establishing Main Theorem 1.
Although such a frequency domain approach was used in an earlier paper by Chen,
Krantz, Ma, Wayne and West [9], based upon an explicit representation of the resolvent
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operator, as well as in a more recent paper by A. Wyler [10], by direct estimates using
energy multipliers, here our approach is an indirect contrapositive argument using
multipliers without requiring any explicit knowledge of the resolvent operator, which is
more consistent with the argument given in Chen, Fulling, Narcowich and Sun [11]. To
our knowledge, this is the first time the frequency domain method is successfully
incorporated with the energy multiplier technique and a contrapositive argument to prove
exponential stabilization problems. This approach enables us to handle lower order terms
(cited at the beginning of this paragraph) with sufficient ease to achieve the desirable result,
skipping the kind of unique continuation–compactness arguments that are required in
reference [7]. Confer also Liu [12].

In section 5, we study the case of domain with corners. When corners are present,
the twisting moments there will contribute additional energy terms, and consequently
the integration by parts formula needs to be amended (Stern [13], Hartman and
Zotemantel [14] and Chen, Coleman and Ding [15]) to take such effects into
account. We are able to formulate additional pointwise constraints at corner
points, and prove the uniform exponential decay of energy in Main Theorem 2 for
domains with corners, under a provisional assumption [R] of sufficient regularity of
solutions.

Since the publication of Bardos, Lebeau and Rauch [16], the method of microlocal
analysis has been successfully applied to a variety of time-dependent PDEs to yield uniform
decay results on domains with less restrictive geometry (primarily, the kind of geometry
that is non-wave trapping). The authors foresee that, perhaps in only a matter of time,
such a method will also be successfully applied to the problem under study here. So what
is the point of publishing this work, with the understanding that a more advanced method
seems destined to surpass it in the (perhaps not remote) future? Our response is articulated
as follows:

(1) The microlocal method applies only to domains V the boundary 1V of which
is Ca (or by taking the limit, C3), while the energy-multiplier technique (as part of
the a priori estimates) can be applied to domains with corners, when sufficient
regularity of solutions is known or assumed, such as the case of rectangular geometry
treated in Quinn and Russell [17]. Here our shell model with the presence of corners
is even more different from second order PDE systems such as the wave equation,
and obviously our Main Theorem 2 is not immediately obtainable from microlocal
methods, if our regularity assumption [R] is indeed valid for some geometries.

(2) The analysis here still provides useful clues to the future microlocal analysis work.
(3) This classical method is easily usable and understandable, and is accessible to a

non-expert in microlocal analysis, whereas the geometrical meanings of assumptions
(involving rays) made in microlocal methods are often not as clearly understandable or
verifiable.

2. DONNELL’S SHALLOW CIRCULAR CYLINDRICAL SHELL MODEL

We give a brief derivation of Donnell’s shallow circular cylindrical model. Consider a
differential element OABC as shown in Figure 1(a). Let u be the displacement of the shell
in the x-direction of the point O at time t; v, its s-direction displacement; and w, its
z-direction displacement. R is the radius of the shell. The co-ordinate system is set up as
shown in Figure 1(b).

We denote the membrane forces, shearing forces, bending and twisting moments as
shown in Figures 2 and 3.
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Figure 1. (a) The differential element OABC. (b) A circular cylindrical shell; x=constant is a circular edge,
and s=constant is a straight edge. For a shallow shell to be a good approximation, the overall angle extended
from the axis should not be larger than p/3.

It is known [18–21] that the strains are given by

ox =
1u
1x

, os =
1v
1s

+
1
R

w, g=
1v
1x

+
1u
1x

. (1)

Also, the changes in curvature are

kx =
12w
1x2 , ks =

1
R

1v
1s

−
12w
1s2 , xxs =

1
R

1v
1x

−
12w

1x 1s
. (2)

Then the stress–strain relations are

Nx =
Eh

1− n2 (ox + nos ), Ns =
Eh

1− n2 (os + nox ),

Mx =−D(kx + nks ), Ms =−D(ks + nkx ),

Nxs =Nsx =
hE

2(1+ n)
g, Mxs =−Msx =D(1− n)xxs ,

where h is the cylinder’s thickness, n its Poisson ratio, 0Q nQ 1/2, E the modulus of
elasticity, and D=Eh3/12(1− n)2 the flexural rigidity.

Figure 2. The forces acting on OABC. Nx , Nx , Nxs (and Nsx ), membrane forces per unit length of axial section
s and x, and a section perpendicular to the axis of a cylindrical shell, respectively; Qs , Qx , shearing forces parallel
to z-axis per unit length of an axial section and a section perpendicular to the axis of a cylindrical shell,
respectively.
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Figure 3. The moments acting on OABC. Ms , Mx , bending moments per unit length of axial section and a
section perpendicular to the axis of a cylindrical shell, respectively; Mxs , Msx , twisting moments per unit length
of an axial section of a cylindrical shell.

Then the strain energy of OABC due to the membrane stresses is the same as in plate
theory and contains the three contributions:

1
2

Nx ox dx ds=
Eh

2(1− n2)
(ox + nos )ex dx ds,

1
2

Ns os dx ds=
Eh

2(1− n2)
(os + nox )es dx ds,

1
2

Nxs g dx ds=
Ehg

4(1+ n)
g dx ds, (3)

while that due to the moments contains

−1
2 Mx kx dx ds=−1

2 [−D(kx + nks )kx ] dx ds,

−1
2 Ms ks dx ds=−1

2 [−D(ks + nkx )ks ] dx ds, Mxs xxs dx ds=D(1− n)x2
xs dx ds. (4)

The kinetic energy in OABC is given by

1
2 m(u2

t + v2
t +w2

t ) dx ds, (5)

where m=mass density. However, Kraus [18] regards the contributions of kinetic energy
by u and v to be insignificant, and therefore he neglects them in equation (5) and retains
only

1
2 mw2

t dx ds (6)

as the kinetic energy. Therefore the total energy of vibration at time t, from equations (3),
(4) and (6), after substituting (1) and (2) therein, is

E(t)= 1
2 g g 6m01w

1t1
2

+
Eh

1− n2 $01u
1x1

2

+01v
1s

+
1
R

w1
2

+2n
1u
1x 01v

1s
+

1
R

w1+ 1
2 (1− n)01v

1x
+

1u
1s1

2

%
+D$012w

1x21
2

+012w
1s21

2

+2n
12w
1x2

12w
1s2 +2(1− n)0 12w

1x 1s1
2

% dx ds. (7)
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Applying the principle of virtual work to equation (7), we obtain the following system of
three PDEs:

12u
1x2 +

1+ n

2
12v

1x 1s
+

1− n

2
12u
1s2 +

n

R
1w
1x

=0, (8)

1+ n

2
12u

1x 1s
+

1− n

2
12v
1x2 +

12v
1s2 +

1
R

1w
1s

=0, (9)

h2

12
D2w+

1
R 01

R
w+

1v
1s

+ n
1u
1x1=−m

1− n2

Eh
12w
1t2 . (10)

Remark 2.1. Had we not omitted

g 1
2 m(u2

t + v2
t ) dx ds

from equation (7), then equations (8) and (9) would contain inertial terms respectively as
follows:

12u
1x2 +

1+ n

2
12v

1x 1s
+

1− n

2
12u
1s2 +

n

R
1w
1x

=m
1− n2

Eh
12u
1t2 , (8)'

1+ n

2
12u

1x 1s
+

1− n

2
12v
1x2 +

12v
1s2 +

1
R

1w
1s

=m
1− n2

Eh
12v
1t2 . (9)'

For the coupled system (8)', (9)' and (10), the kind of stabilization problem to be studied
in section 4 is actually much easier than the one to be treated here. Therefore here we will
treat only the model (8), (9) and (10).

Remark 2.2. The displacement w can be decoupled from u and v by Donnell’s method [18],
resulting in

h2

12
D4w+

1− n2

R2

14w
1x4 =−

m(1− n2)
Eh

12

1t2 D2w. (11)

This says that the shell system (8–10) is essentially equivalent to a single scalar PDE of
order 8.

3. DISSIPATIVE BOUNDARY CONDITIONS, FUNCTIONAL–ANALYTIC SETTING
AND CONTRACTION SEMIGROUP OF EVOLUTION

First, we adjust the notation by writing x1 and x2 for x and s, respectively. Let V $ R2

be the underlying co-ordinate domain for Donnell’s shallow circular cylindrical shell; V

is a bounded open domain with boundary 1V which is C2-smooth.
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The strain energy derived in equations (3), (4) and (7) corresponds to a sesquilinear form

a2&u1

v1

w1', &u2

v2

w2'3
0K gV 6u1x1 ū2x1 +6v1x2 +

1
R

w110v̄2x2 +
1
R

w̄2 1
+ n$v1x1 0v̄2x2 +

1
R

w̄2 1+0v1x2 +
1
R

w1 1ū2x1 %+
1− n

2
(u1x2 + v1x1) (ū2x2 + v̄2x1)7 dx

+D gD

[(Dw1) (Dw̄2)+ (1− n) (2w1x1 x2 w̄2x1 x2 −w1x1 x1 w̄2x2 x2 −w1x2 x2 w̄2x1 x1)] dx,

(12)

where

K0
Eh

1− n2, x=(x1, x2) $ V, dx=dx1 dx2,

and subscripts involving x1 and x2 mean partial derivatives with respect to x1 and x2. Here
the sesquilinear form is taken to be complex in preparation for the study in section 4.

The following is an easy generalization of the Rayleigh–Green formula for a plate.

Lemma 3.1. (integration by parts formula). Let (ui , vi , wi ), i=1, 2, be sufficiently smooth
on V. Then, for the sesquilinear form a defined in equation (12), we have

a2&u1

v1

w1', &u2

v2

w2'3=gV 2A&u1

v1

w1'3 · & ū2

v̄2

w̄2' dx

+g1V 6B1 (u1, v1, w1) · ū2 +B2 (u1, v1, w1) · v̄2

− (B1 w1)w̄2 + (B2 w1)
1w̄2

1n % ds, (13)

where A, B1, B2, B1 and B2 are defined by

u ux1 x1 +
1+ n

2
vx1 x2 +

1− n

2
ux2 x2 +

n

R
wx1

A v =−K
1+ n

2
ux1 x2 +

1− n

2
vx1 x1 + vx2 x2 +

1
R

wx2 , on V, (14)G
G

G

G

G

K

k

G
G

G

G

G

L

l

G
G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l
w −0h2

12
D2w+

1
R 0nux1 + vx2 +

1
R

w11
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B1 (u, v, w)=K6$ux1 + n0vx2 +
1
R

w1%n1 +
1− n

2
(ux2 + vx1)n2 7, on 1V,

B2 (u, v, w)=K6$nux1 +0vx2 +
1
R

w1%n2 +
1− n

2
(ux2 + vx1)n1 7, on 1V,

B1 w=D6 1

1n
(Dw)− (1− n)

1

1s
[n1 n2 (wx1 x1 −wx2 x2)− (n2

1 − n2
2 )wx1 x2]7, on 1V,

B2 w=D{nDw+(1− n) [n2
1 wx1 x1 + n2

2 wx2 x2 +2n1 n2 wx1 x2]}, on 1V,

with n=(n1, n2), the unit outward normal, and 1/1s=−n2 1/1x1 + n1 1/1x2, the
counterclockwise tangential derivative on 1V.

According to equation (7), the total energy of the system is given by

E=KE+PE1 +PE2,

where, apart from a factor of 1/2,

KE=m gV

=wt (x, t) =2 dx

PE1 =PE1 (u, v, w; t)

=K gV 6=ux1 (x, t) =2 + bvx2 (x, t)+
1
R

w(x, t)b
2

+2n Re ux1 (x, t)$v̄x2 (x, t)+
1
R

w̄(x, t)%+
1− n

2
=ux2 (x, t)+ vx1 (x, t) =27 dx,

PE2 =PE2 (w; t)

=D gV

{=Dw(x, t) =2 +2(1− n) [=wx1 x2 (x, t) =2 −Re wx1 x1 (x, t)w̄x2 x2 (x, t)]} dx.

Here, KE is the kinetic energy, PE1, is the stretching strain energy and PE2 is the bending
strain energy.

In sections 3–4, we consider the case in which 1V consists of two disconnected parts G0

and G1 :

1V=G0 �*G1, (15)

where each of G0 and G1 is non-empty and closed. (A priori, V cannot be a simply
connected domain.) The case in which G0 and G1 have a non-empty intersection
is treated in section 5, where we will require that G0 and G1 overlap only at their
two end points which must also be corner points. On G0, we assume that the shell
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is clamped:

u(x, t)=0, v(x, t)=0,

w(x, t)=0,
1w(x, t)

1n
=0,

(16)
G
G

G

K

k

G
G

G

L

l[x $ G0, [tq 0.

The boundary conditions in equations (16) on G0 are energy-conserving. We now derive
linear dissipative boundary conditions on G1 by differentiating the energy:

d
dt

E=
d
dt 8gV

m =wt =2 dx+a2&uvw', &uvw'39
=Re 82 gV

mwtt w̄t dx+2a2&uvw', &ut

vt

wt'39
=Re &2 gV

mwtt w̄t dx+2a gV 2A&uvw'3 · & ūt

v̄t

w̄t' dx, (by Lemma 3.1)

+2 gG1
6B1 (u, v, w) · ūt +B2 (u, v, w) · v̄t −(B1 w)w̄t +(B2 w)

1w̄t

1n 7 ds'. (17)

On V, we know from section 2 that u, v and w satisfy the PDE system

& 0
0

mwtt'+A&uvw'= &000'. (18)

Therefore, the two integrals on V in equation (17) add to zero. We obtain

d
dt

E=2 gG1
6B1 (u, v, w) · ūt +B2 (u, v, w)v̄t −(B1 w)w̄t +(B2 w)

1w̄t

1n 7 ds. (19)

On G1, if

B1 (u, v, w) =0,

B2 (u, v, w) =0,

G
G

G

G

G

K

k
$ B1 w
−B2 w%=F& wt

1wt

1n ', [tq 0, on G1, (20)

where the feedback gain matrix F is a symmetric positive semidefinite matrix, with
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sufficiently smooth (say, in C2(G1)) entries of the form

F=$d1 ( · )
b( · )

b( · )
d2 ( · )%, d1 (x)e 0, d2 (x)e 0, b(x) $ R,

d1 (x)d2 (x)− b2(x)e 0, x $ G1, (21)

then equations (19) and (20) give

d
dt

E(t)=−2 gG1
$wt ,

1wt

1n %F& w̄t

1w̄t

1n ' dsE 0.

Therefore the boundary conditions in equation (20) on G1 cause energy dissipation.
There are many types of boundary conditions other than equation (20) that may also

cause energy dissipation on G1. However, so far equation (20) is the only major type for
which we are able to establish the uniform exponential decay result in this paper.

Let Hs(V) (=Ws,2(V)) be the usual Sobolev space of order se 0 on V and, for a positive
integer k, let

Hk
G0

(V)=6f $ Hk(V) = f= 1f
1n

=· · ·=
1k−1f
1nk−1 =0 on G0 7.

We will often write Hk
G0

instead of Hk
G0

(V) for brevity.
Let us decompose the bilinear form a in equation (12) into the following associated

bilinear and linear forms. First, we define reduced sesquilinear forms

aI 0$u1

v1%, $u2

v2%1=K gV

[u1x1 ū2x1 + v1x2 v̄2x2 + n(u1x1 ū2x2 + v1x2 ū2x1)

+
1− n

2
(u1x2 + v1x1) (ū2x2 + v̄2x1)] dx, (ui , vi ) $ H1

G0
×H1

G0
, i=1, 2,

(22)

aII (w1, w2)=D gV $(Dw1) (Dw̄2)+ (1− n) (2w1x1 x2 w̄2x1 x2 −w1x1 x1 w̄2x2 x2

−w1x2 x2 w̄2x1 x1)+
1
R2 w1 w̄2 % dx, w1, w2 $ H2

G0
, i=1, 2. (23)

Next, for given w$H2
G0

, define the (conjugate) linear form

uw
I 0$uv%1=K gV

1
R

w(nūx1 + v̄x2) dx, (u, v) $ H1
G0

×H1
G0

, (24)

and, for given (u, v) $ H1
G0

×H1
G0

, define the (conjugate) linear form

u(u,v)
II (w)=K gV

1
R

(nux1 + vx2)w̄dx, w $ H2
G0

. (25)
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Then it is easy to check that

a2&u1

v1

w1', &u2

v2

w2'3=aI 0$u1

v1%, $u2

v2%1+aII (w1, w2)

+ uw1
I 0$u2

v2%1+ u(u1,v1)
II (w2). (26)

Lemma 3.2. Let uI and uII be defined as in equations (24) and (15). Then:
(i) uI is linear with respect to w and conjugate linear with respect to (u, v); i.e.,

ucw1 +w2
I 0$uv%1= cuw1

I 0$uv%1+ uw2
I 0$uv%1,

uw
I 0c$u1

v1%+$u2

v2%1= c̄uw
I 0$u1

v1%1+ uw
I 0$u2

v2%1,

for all c $ C; w, w1, w2 $ H2
G0

; and (u, v), (u1, v1), (u2, v2) $ H1
G0

×H1
G0

. For any given
w $ H2

G0
, uw

I ( · ) is a continuous (conjugate) linear functional on H1
G0

×H1
G0

.
(ii) uII is linear with respect to (u, v) and conjugate linear with respect to w; i.e.,

uc(u1,v1)+ (u2,v2)
II (w)= cu(u1,v1)

II (w)+ u(u2,v2)
II (w), (27)

u(u,v)
II (cw1 +w2)= c̄u(u,v)

II (w1)+ u(u,v)
II (w2), (28)

for all c $ C; (u, v), (u1, v1), (u2, v2) $ H1
G0

×H1
G0

; and w, w1, w2 $ H2
G0

. For any given
(u, v) $ H1

G0
×H1

G0
, u(u,v)

II ( · ) is a continuous conjugate linear functional on H2
G0

.

Proof. The proof is obvious

Lemma 3.3. Define a mapping

L: H2
G0
:H1

G0
×H1

G0

by

L(w̃)= (ũ, ṽ), w̃ $ H2
G0

, (ũ, ṽ) $ H1
G0

×H1
G0

,

where (ũ, ṽ) is the unique solution to the variational problem

aI 0$ũṽ%, $uv%1=−uw̃
I 0$uv%1, [(u, v) $ H1

G0
×H1

G0
. (29)

Then L is a continuous linear transformation from H2
G0

into H1
G0

×H1
G0

.

Proof. The bilinear form aI is coercive on H1
G0

×H1
G0

because of (a version of) Korn’s
Lemma. Therefore the variational problem (29) has a unique solution
(ũ, ṽ) $ H1

G0
×H1

G0
. The rest of the proof follows from the Riesz Representation Theorem

and Lemma 3.2.
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The solution (ũ, ṽ)=Lw̃ actually has higher regularity than H1
G0

×H1
G0

as promised by
Lemma 3.3. This is given in the following
Corollary 3.4. For given w̃ $ H2

G0
, let (ũ, ṽ)=Lw̃. Then

(ũ, ṽ) $ (H1
G0

×H1
G0

)+ (H3(V)×H3(V)),

and (ũ, ṽ) satisfies

aI 0$ũṽ%, $uv%1+ uw̃
I 0$uv%1−gG0

{B1 (u, v, w) · B2 (u, v, w) · v̄} ds=0,

[(u, v) $ H1(V)×H1(V).

Proof. Since (ũ, ṽ, w̃) satisfies

aI 0$ũṽ%, $uv%1=−uw̃
I 0$uv%1, [(u, v) $ H1

G0
×H1

G0
.

by calculus of variations we see that (ũ, ṽ) forms a weak solution of the following elliptic
system:

K0ũx1 x1 +
1+ n

2
ṽx1 x2 +

1− n

2
ũx2 x2 1=−K ·

n

R
w̃x1, on V, (30)

K01+ n

2
ũx1 x2 +

1− n

2
ṽx1 x1 + ṽx2 x2 1=−K ·

1
R

w̃x2, on V, (31)

K$(ũx1 + nṽx2)n2 +
1− n

2
(ũx2 + ṽx1)n1 %=−K ·

n

R
n1 w̃ , on G1, (32)

K$(nũx1 + ṽx2)n2 +
1− n

2
(ũx2 + ṽx1)n1 %=−K ·

1
R

n2 w̃ , on G1, (33)

ũ=0, ṽ=0, on G0.

The above system satisfies the conditions in Douglas and Nirenberg [22], and the classical
elliptic regularity results of solutions hold. Since the RHS of equations (30) and (31) belong
to H1(V), and the RHS of equations (32) and (33) belong to H3/2(G1), we obtain
(u, v) $ H3(V)×H3(V).

The rest follows from integration by parts.
We are now in a position to determine the infinitesimal generator corresponding to the

evolution equation (18) subject to boundary conditions (16) and (20), and with certain
initial condition (u0, v0, w0). We will take advantage of a natural tri-space setting
V ,H,V*. Let

V0H2
G0

, H=L2(V), V*= the dual of V pivotal to H. (34)

For any w1, w2 $ V, define

Mw1, w2 m= aII (w1, w2)+ uLw1
II (w2), w1, w2 $ V. (35)

Theorem 3.5. Expression (35) defines a symmetric positive-definite continuous sesquilinear
form on V. Consequently, M , m constitutes an inner product for the Hilbert space V.



   277

Proof. It is routine to check that for any w $ H2
G0

(V), the functionals

M · , wm=aII ( · , w)+ uL ·
II (w): H2

G0
(V):R,

and

Mw, · m=aII (w, · )+ uLw
II ( · ): H2

G0
(V):R,

are continuous. We now verify that, for any w, w1, w2 $ H2
G0

(V) and any c $ C,

Mw1 + cw2, wm=Mw1, wm+ cMw2, wm. (36)

By definition from equation (35), and by Lemma 3.2,

Mw1 + cw2, wm=aII (w1 + cw2, w)+ uL(w1 + cw2)
II (w)

= [aII (w1, w)+ uLw1
II (w)]+ [caII (w2, w)+ cuLw2

II (w)]

=Mw1, wm+ cMw2, wm.

Therefore, equation (36) has been verified. Similarly, we can also show that

Mw, w1 + cw2 m=Mw, w1 m+ c̄Mw, w2 m.

Hence, M , m is a continuous sesquilinear form on V.
To show that M , m is symmetric, let w1, w2 $ H2

G0
and let (u1, vi )=Lwi , i=1, 2. Then

Mw1, w2 m=aII (w1, w2)+ uLw1
II (w2) (37)

=aII (w1, w2)

+ uLw1
II (w2)+$aI 0$u1

v1%, $u2

v2%1+ uw1
I 0$u2

v2%1% (by Lemma 3.3)

=a2&u1

v1

w1', &u2

v2

w2'3 (by equation (26)) (38)

=aII (w2, w1)+ uLw2
II (w1)

+ $aI 0$u2

v2%, $u1

v1%1+ uw2
I 0$u1

v1%1% (by equation (29))

=aII (w2, w1)+ uLw2
II (w1) (by Lemma 3.3)

=Mw2, w1 m. (39)

Finally, to show that M , m is positive definite, we use equations (37) and (38) by letting
w1 =w2 =w and (u, v)=Lw therein, yielding

Mw, wm=a2&uvw', &uvw'3q 0, if w$ 0.

From Poincaré’s inequality, we also have

Mw, wme d>w>2
V , for some dq 0.

The proof is complete.
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The sesquilinear form M · , · m induces an operator A, the canonical isomorphism, on
V:

6A: V:V*,
Mw1, w2 m= �Aw1, w2 �V*×V .

(40)

Lemma 3.6. (Integration by parts formula for the sesquilinear form M · , · m). Let
w1, w2 $ V, and (ui , vi )=Lwi for i=1, 2. Then

Mw1, w2 m=a2&u1

v1

w1', &u2

v2

w2'3, (41)

and if w1 and w2 are sufficiently smooth, we have

Mw1, w2 m=gV 6DD2w1 +K$1
R

(nu1,x1 + v1,x2)+
1
R2 w1 %7w̄2 dx

−gG1
$(B1 w1)w̄2 − (B2 w1)

1w̄2

1n % ds. (42)

Furthermore, if w1 $ V, (u1, v1)=Lw1, and w2 $ H2(V), then

aII (w1, w2)+ uLw1
II (w2)=gV 6DD2w+K$1

R
(nu1,x1 + v1,x2)+

1
R2 w1 %7w̄2 dx

−g1V $(B1 w1)w̄2 − (B2 w1)
1w̄2

1n % ds.

Proof. Equality (41) follows from equations (37) and (38) in the proof of Theorem 3.5.
From equation (41), we can apply Lemma 3.1 provided that (ui , vi , wi ), i=1, 2, are

sufficiently smooth. But (ui , vi ), i=1, 2, will always be smooth enough, by Corollary 3.4.
Therefore we only need w1 and w2 to be sufficiently smooth, and we obtain

Mw1, w2 m=a2&u1

v1

w1', &u2

v2

w2'3
=gV 2A&u1

v1

w1'3 · & ū2

v̄2

w̄2' dx+gG1

[B1 (u1, v1, w1) · ū2 +B2 (u1, v1, w1) · v̄2] ds

−gG1
$(B1 w1) · w̄2 − (B2 w1)

1w̄2

1n % ds.

But, by the proof of Corollary 3.4, equations (30)–(33) hold, and so the first two
components of A(u1, v1, w1)T are zero, and B1 (u1, v1, w1)=0, B2 (u2, v2, w2)=0 on G1.
Hence equation (42) follows.
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For v1, v2 $ V, we also define another sesquilinear form, cf. (21)

b(v1, v2)=gG1
$v1,

1v1

1n%F& v̄2

1v̄2

1n' ds. (43)

Then this sesquilinear form b induces an operator B:

6B: V:V*,
b(v1, v2)= �Bv1, v2 �V*×V .

(44)

Obviously, B is a symmetric positive semidefinite operator:

�Bv, v�e 0, [v $ V.

Let H0V×H be the Hilbert space equipped with the inner product

W$w1

z1%, $w2

z2%wH

0Mw1, w2 m+ �z1, z2 �H , (wi , zi ) $ H, i=1, 2. (45)

The associated norm will be denoted by > >H, or briefly > >, in case no ambiguity should
occur.

We now define an operator A on H by

A=$ 0
−A

I
−B%: D(A):H, (46)

D(A)=6$w0

w1%bw0, w1 $ V, −(Aw0 +Bw1) $ H7. (47)

Lemma 3.7. The operator A is dissipative on H.

Proof. Let (w, z) $ D(A). Then

Re WA$wz%, $wz%wH

=Re W$ z
−(Aw+Bz)w, $wz%wH

=Re [Mz, wm+ �Aw−Bz, z�L2(V)]

=Re [Mz, wm−Mw, zm− �Bz, z�V*×V ]

=−�Bz, z�V*×V

E 0.

Theorem 3.8. A is the infinitesimal generator of a C0-semigroup of contractions in H.

Proof. We know that D(A) is dense in H because A−1 is a bounded operator on H and
A is dissipative.

We may now apply the Lumer–Phillips Theorem [23]. We show that, for some l0 q 0,

Range (l0 I−A)=H. (48)
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It is easy to check that equation (48) is equivalent to

Range (A+ l2
0 I+ l0 B)=V*. (49)

Choose any l0 q 0. Then

�(A+ l2
0 I+ l0 B)w1, w2 �V*×V =Mw1, w2 m+ l2

0 gV

w1 w̄2 dx

+l0 gG1
$w1,

1w1

1n %F& w̄2

1w̄2

1n ' ds,

and the RHS above becomes a bounded coercive sesquilinear form on H2
G0

(V). We
therefore have equation (49) by the Lax–Milgram Theorem.

Incidentally, we note from the above that l0 =0 belongs to r(A), the resolvent set of
A; i.e., A−1 is a bounded linear operator on H.

The following regularity result is familiar (Lagnese [1], Pazy [23]).

Corollary 3.9. Let A be the infinitesimal generator of C0-semigroup S(t), tq 0, on H
as in Theorem 3.8. Then, for the Cauchy problem,

d
dt $w( · , t)

ẇ( · , t)%=A$w( · , t)
ẇ( · , t)%, tq 0,

$w( · , 0)
ẇ( · , 0)%=$w0

w1% $ H, (50)

we have (w, ẇ)=S( · ) (w0, w1) $ C0([0, a); H). Furthermore, if (w0, w1) $ D(A), then w
satisfies

8 w $ C1([0, a); V)+C2([0, a); H),
Aw+Bẇ $ C0([0, a); H),
ẅ +Aw+Bẇ=0, tq 0.

(51)

Note that we have tacitly set m=1 (through normalization) in equation (45) so that
the functional differential equation (51) is just the PDE

wtt +DD2w+K$1
R

(nux1 + vx2)+
1
R2 w%=0 (52)

as obtained from the third component of the system (18) by setting m=1 therein, subject
to the boundary conditions (16) and (20). For the rest of the paper, we will continue to
use m=1 for convenience.
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4. A FREQUENCY DOMAIN METHOD WITH ENERGY MULTIPLIERS FOR PROVING
UNIFORM EXPONENTIAL DECAY OF ENERGY

We first recall the following ‘‘Frequency Domain Theorem’’ (Huang [24], Prüss [25]) for
proving exponential decay.

Theorem 4.1. Let eAt, tq 0, be a C0-semigroup in a Hilbert space satisfying >eAt>QM,
[te 0. Then eAt decays exponentially if and only if:

(i) {iv =v $ R}Wr(A), (r(A) is the resolvent set of A), (53)

(ii) sup{>(ivI−A)−1> =v $ R=}Qa. (54)

Lemma 4.2. (energy identity). Let w $ H7/2+ o(V), and u, v $ H3/2+ o(V) for some small oq 0.
Assume that w= 1w/1n=0 and u= v=0 on G0. Then

Re gV

A&uvw' · &x · 9ū
x · 9v̄
x · 9w̄' dx=T0 + s

9

j=1

Tj , (55)

where

T0 0 aII (w, w)+Re u(u,v)
II (w),

T1 0−D gG0

(x · n)b12w
1n2 b

2

ds, T2 0Re gG1

(B1 w) (x · 9w̄) ds,

T3 0−Re gG1

(B2 w)
1

1n
(x · 9w̄) ds,

T4 0−K gG0

(x · n)$=ux1 =2 + =vx2 =2 +2n Re ux1 v̄x2 +
1− n

2
=ux2 + vx1 =2% ds,

T5 0−Re gG1

[B1 (u, v, w) (x · 9ū)+B2 (u, v, w) (x · 9v̄)] ds,

T6 0
D
2 gG0

(x · n)b12w
1n2 b

2

ds,

T7 0
D
2 gG1

(x · n) [=Dw =2 +2(1− n) (=wx1 x2 =2 −Re wx1 x1 w̄x2 x2)] ds,

T8 0
K
2 gG0

(x · n)$=ux1 =2 + =vx2 =2 +2n Re ux1 v̄x2 +
1− n

2
=ux2 + vx1 =2% ds,
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T9 0
K
2 gG1

(x · n)$=ux1 =2 + =vx2 =2 +2n Re ux1 v̄x2 +
1− n

2
=ux2 + vx1 =2% ds,

In particular, if (u, v)=Lw, then

T0 =Mw, wm and T5 =0.

Proof. From Lemma 3.1, we have

gV

A&uvw' · &x · 9ū
x · 9v̄
x · 9w̄' dx

=a2&uvw', &x · 9u
x · 9v
x · 9w'3

+g1V $(B1 w) (x · 9w̄)− (B2 w)
1

1n
(x · 9w̄)% ds

+g1V

[B1 (u, v, w) · (x · 9ū)+B2 (u, v, w) · (x · 9v̄)] ds. (56)

Since w= 1w/1n=0 on G0, we have 9w=0 on G0, and thus

B2 w=DDw=D
12w
1n2 ,

1

1n
(x · 9w)= (x · n)Dw=(x · n)

12w
1n2 , cf. (reference [26]).

Therefore

g1V $(B1 w) (x · 9w̄)− (B2 w)
1

1n
(x · 9w̄)% ds=T1 +T2 +T3.

Also, u= v=0 on G0 gives 9u=(1u/1n)n, 9v=(1v/1n)n on G0, implying that

n2 ux1 = n1 ux2, n2 vx1 = n1 vx2, on G0. (57)

These, along with w=0 on G0, give

1
K

(B1 (u, v, w)) (x · 9ū)=6(ux1 + nvx2)n1 +
1− n

2
(ux2 + vx1)n2 7(x1 ūx1 + x2 ūx2)

= (x · n)$=ux1 =2 + nūx1 vx2 +
1− n

2
ūx2 vx1 +

1− n

2
=ux2 =2%,
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and

1
K

(B2 (u, v, w)) (x · 9v̄)=6(nux1 + vx2)n2 +
1− n

2
(ux2 + vx1)n1 7(x1 v̄x1 + x2 v̄x2)

= (x · n)$nux1 v̄x2 + =vx2 =2 +1− n

2
ūx2 v̄x1 +

1− n

2
=vx1 =2%,

which correspond to T4 ; T5 is just the remainder part of that integral on G1.
Now let us treat the first term on the RHS of equation (56). By equation (26), we have

a2&uvw', &x · 9u
x · 9v
x · 9w'3=aII (w, x · 9w)+aI 0$uv%, $x · 9u

x · 9v%1+ uw
I 0$x · 9u

x · 9v%1+ u(u,v)
II (w).

(58)

From equation (58) and Lagnese [26], taking into account the coefficient D and taking only
the real parts, we obtain

Re aII (w, x · 9w)=aII (w, w)+T6 +T7. (59)

For the last three terms on the RHS of equation (58), we have

S0 aI 0$uv%, $x · 9u
x · 9v%1+ uw

I 0$x · 9u
x · 9v%1+ u(u,v)

II (x · 9w)

=K gV 6ux1 (x · 9ū)x1 +0vx2 +
1
R

w1$(x · 9v̄)x2 +
1
R

(x · 9w̄)%
+n$ux1 0(x · 9v̄)x2 +

1
R

(x · 9w̄)1+0vx2 +
1
R

w1(x · 9ū)x1 %
+

1− n

2
(ux2 + vx1) ((x · 9ū)x2 + (x · 9v̄)x1)7 dx−

K
R2 gV

=w =2 dx.

Integrating by parts, using equation (57) and w =G0 =0, we obtain

Re S=T8 +T9 +Re u(u,v)
II (w). (60)

Finally, from equations (59) and (60),

Re [aII (w, w)+ u(u,v)
II (w)]=T0,

and so every term on the RHS of equation (55) is accounted for.

Now, we are in a position to prove the first main theorem in this paper.
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Main Theorem 1 (uniform exponential decay of energy of Donnell’s shallow shell). Assume
that

(i) F in equation (21) is strictly positive definite, i.e., Fe b	 I2 on G1 for some b	
q 0;

(61)

(ii) x · nE 0 on G0, (62)

(iii) x · ne gq 0 on G1 for some g. (63)

Then there exist two positive constants C and m, independent of the initial state
(w0, w1) $ H, such that

E(t)EC e−mtE(0), te 0. (64)

Furthermore, if

F=$d1 ( · )
0

0
0%, d1 (x)e b	 q 0 on G1, (65)

then (iii) above can be weakened to x · ne 0, yet with equation (64) remaining valid.

Proof. By Theorem 4.1, we need only prove that there is some cq 0 such that

B(ivI−A)$wz%BH

e cB$wz%BH

, [v $ R, $wz% $ D(A).

Assume, on the contrary, that the above fails. Then there exist sequences vp $ R,
(wp , zp ) $ D(A) such that

=vp =e dq 0 (because 0 $ r(A)) (66)

and

b$wp

zp%bH =1, i.e., Mwp , wp m+ �zp , zp �H =1, (67)

but

(ivp I−A)$wp

zp%=$fp

gp%:0 strongly in H, as p:a. (68)

Equation (68) gives

6ivp wp − zp = fp:0 strongly in V,
ivp zp +(Awp +Bzp )= gp:0 strongly in H,

as p:a. (69)

We have the regularity wp $ H4(V)+H2
G0

and zp $ H2
G0

. We want to show that equation (69)
leads to a contradiction.
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We have, from equations (61) or (65),

b	 gG1

=zp =2 dsEgG1
$zp ,

1

1n
zp %F& z̄p

1

1n
z̄p' ds= �Bzp , zp �V*×V

=Re W−A$wp

zp%, $wp

zp%wH

=Re W(ivp I−A)$wp

zp%, $wp

zp%wH

=Re W$fp

gp%, $wp

zp%wH

= o(1), (70)

where o(1) is the little o notation, meaning that the sequence tends to zero. Therefore, if
equation (61) holds, we have

>zp >L2(G1) = o(1), B 1

1n
zp BL2(G1)

= o(1), >Bzp >V* = o(1), as p:a. (71)

Let (up , vp )=Lwp and write jp =(up , vp , wp ). Then equation (69) is equivalent to

zp =ivp wp − fp ,F
G
GAjp − & 0

0
v2

p wp'= & 0
0

gp +ivp fp' on V,
G
G
G
gwp =

1

1n
wp = zp =0 on G0,G

G
G B1 jp =B2 jp =0

$ B1 wp

−B2 wp%=F& zp

1

1n
zp' on G1.

(72)G
G
G
f

g
G

G

F

f

Form the V*×V pairing-product of equation (69)2 with w̄p by substituting zp from
equation (69)1 ; we obtain

−v2
p >wp >2

H +Mwp , wp m=ivp � fp , wp �H − �Bzp , wp �V*×V − �gp , wp �H . (73)

By equations (43), (67) and (71), we have

�Bzp , wp �V*×V 0 o(1). (74)

But >gp >H = o(1) from equation (69)2, so we have

�gp , wp �H = o(1). (75)
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From equations (69)1, (67) and the fact that > fp >V = o(1), we obtain

ivp � fp , wp �H = � fp , −ivp wp �H = � fp , −zp − fp �H = o(1). (76)

Using equations (74)–(76) in equation (73), we obtain

−v2
p >wp >2

H +Mwp , wp m= o(1), as p:a. (77)

Also, from equation (69)1, we obtain

v2
p gG1

=wp =2 ds=gG1

=zp + fp =2 ds

=gG1

=zp =2 ds+2 Re gG1

zp f�p ds+gG1

= fp =2 ds

= o(1), (78)

by equation (70), and the fact that > fp >V:0 and the Trace Theorem.
We form the inner product of equation (72)2 with (x · 9ūp , x · 9v̄p , x · 9w̄p ) and integrate

by parts. We first obtain by (78),

gV

(−v2
p wp ) (x · 9w̄p ) dx=gV

v2
p =wp =2 dx−v2

p gG1

(x · n) =wp =2 ds. (79)

Second, by Lemma 4.2, we have

Re gV

Ajp · &x · 9ūp

x · 9v̄p

x · 9w̄p' dx=Mwp , wp m+ 1
2 T1 (p)+ s

3

j=2

Tj (p)+ 1
2 T4 (p)+T6 (p)

+T7 (p)+T9 (p), (80)

where each Tj (p) is the same as Tj in equation (55), except that we have substituted
(up , vp , wp ) for (u, v, w) in Tj , and where we have simplified equation (55) using
T5 (p)=0, because of the boundary conditions in equation (72)4, and
T6 (p)=−1

2 T1 (p), T8 (p)=−1
2 T4 (p), by direct comparisons. Third,

�gp +ivp fp , x · 9wp �H = o(1)+ ivp gV

fp (x · 9w̄p ) dx (by equation (75))

= o(1)+ ivp g1V

(x · n)fp w̄p ds−gV

(2fp + x · 9fp ) (ivp w̄p ) dx

= o(1), by equations (69)1, (77) and (78). (81)



   287

Combining equations (79), (80) and (81), we obtain

o(1)=Mwp , wp m+ 1
2 T1 (p)+ s

3

j=2

Tj (p)+ 1
2 T4 (p)+T7 (p)+T9 (p)

+v2
p gV

=wp =2 dx

eMwp , wp m+v2
p gV

=wp =2 dx+T2 (p)+T3 (p)+T7 (p), (82)

because T1 (p), T4 (p), T9 (p)e 0 by equations (62) and (63). Under the assumption of
equation (60), there exists a constant Cq 0 such that

=T2 (p)+T3 (p) =ECe−1$gG1

(=B1 wp =2 + =B2 wp =2] ds%+ oT7 (p), for any small oq 0.

(83)

From equation (83), using equations (66) and (67)5, we obtain

=T2 (p)+T3 (p) =E oT7 (p)+ o(1). (84)

Using equation (84) in equation (82), we obtain

LHS of equation (82)= o(1)eMwp , wp m+v2
p gV

=wp =2 dx+(1− o)T7 (p)

eMwp , wp m+v2
p gV

=wp =2 dx because T7 (p)e 0)

=2Mwp , wp m+ o(1), by equation (77). (85)

Therefore Mwp , wp m= o(1), contradicting equations (67), (72)1 and (77).
If, instead of equation (61), we have equation (65), then T3 (p)=0, and T7 (p)e 0 in

equation (82) (because x · ne 0), and there exists a small oq 0 such that
T2 (p)E oMwp , wp m, for all p sufficiently large. Again equation (85) holds, and we have
a contradiction.

The proof is complete.

We can further utilize an idea from Komornik and Zuazua [27] to weaken the
geometrical condition (59), to obtain the following:

Corollary 4.3. Assume that equations (57) and (58) hold, and that the boundary condition
(20)3 is replaced by

$ B1 w
−B2 w%=(x · n)F& wt

1wt

1n ', [tQ 0, on G1,
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Then equation (59) can be weakened to x · ne 0 on G1, and the uniform exponential decay
result (60) of Main Theorem 1 remains valid.

Proof. It is a straightforward matter to check that with the above adjustment of
assumptions, all the arguments in the proof of Main Theorem 1 go through. We omit the
details.

5. BOUNDARY STABILIZATION OF DONNELL’S SHELLS ON DOMAINS WITH
CORNERS

When the Kirchhoff thin plate equation or Donnell’s thin circular cylindrical shell
system are posed on domains with corners, the corners of such domains may contribute
some static strain energy which does not excite vibrations [15]. Therefore our Main
Theorem 1 in section 4 is no longer valid. In this section, we properly adapt the arguments
so that the corner effects are accounted for and a new uniform exponential decay theorem
can be established, under a provisional assumption of sufficient regularity.

A corner is a non-smooth point of 1V where the tangents at that point on the boundary
curves from both sides exist and form a non-zero or non-cusp angle. We formulate the
following condition.
[DC]: We say that a bounded connected domain VUR2 satisfies the [DC] condition if 1V

is C2-continuous everywhere except at corner points {Pj =j=1, 2, . . . , l}. The boundary 1V

is the union of two non-empty closed connected subsets G0 and G1, where G0 and G1 are
either disjoint, or share two common end points which are corner points.

The basic difference between domains without and domains with corners can be
observed in the following lemma.

Lemma 5.1. [15] (integration by parts formula for Donnell’s shell on domains with
corners). Let V satisfy the [DC] condition. Let 1V be parametrized in a counterclockwise
sense. Then, for sufficiently smooth functions ui , vi and wi , i=1, 2, defined on V and for
the strain energy bilinear form a( · , · ) in equation (12), we have

a2&u1

v1

w1', &u2

v2

w2'3=RHS of (13)+ s
l

j=1

[MT (w1) (Pj )]w̄2 (Pj ), (86)

where, for a function w, the twisting moment is

MT (w)=D(1− n) [n1 n2 (wx1 x1 −wx2 x2)− (n2
1 − n2

2 )wx1 x2],

[MT (w) (Pj ]= the jump of MT (w) across

Pj in the direction of increasing arc length

=MT (w) (P+
j )−MT (w) (P−

j ).

Note that the extra terms newly appearing on the RHS of equation (86) denote the work
done by the l corner forces [MT (w1)] (Pj ), j=1, 2, . . . , l, acting through the l corner
displacements w2 (Pj ) [13–15].
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n xx
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x
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Next, we derive dissipative boundary conditions. We have

d
dt

E(t)=
d
dt 8gV

mw2
t dx+a2&uvw', &uvw'39

=RHS of (17)+ s
l

j=1

[MT (w) (Pj )]w̄t (Pj ). (87)

Therefore, if we prescribe that

& w
1w
1n'=$00% on G0 ; (88)

$ B1 w
−B2 w%=F& wt

1

1n
wt', F is the same as in equation (21), on G1�{P1, . . . , Pl}; (89)

[MT (w) (Pi )]=−gi wt (Pi ), if Pi $ G1, gi e 0, [tq 0, (90)

then equation (87) leads to

d
dt

E(t)=−gG1
$w̄t ,

1

1n
w̄t %F& wt

1

1n
wt' ds− s

Pi $ G1 �G0

gi =w2
t = (Pi )E 0,

and so energy is decreasing.
It is important to note tht in this section, G�0 and G�1 may share corner points together;

c.f., Figure 4.
Conditions in equation (90) require that the pointwise limits of the twisting moments

MT (w) (P−
i ), MT (w) (P+

i ), as well as the pointwise values wt (Pi ), exist for i=1, 2, . . . , l.

Figure 4. A domain with corners, where G0 contains just one corner point, and G0 +G1 = 9.
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If w $ H4(V)+H2
G0

(V) and wt $ H2
G0

(V) are true, then Sobolev’s imbedding theorem will
give

6w $ C2,a1(1V)
wt $ C0,a2(1V)

,
for any a1 : 0Q a1 Q 1,
for any a2 : 0Q a2 Q 1,

and therefore there would be no problem in equation (90). However, because 1V here
contains corners, the classical regularity results for solutions of elliptic boundary value
problems may no longer be valid in general; the corner conditions in equation (90) may
not be well-defined in the pointwise sense; see Remark 5.3. This difficulty may be overcome
by again using the V , H , V* formalism. For w1, w2 $ V, define a sesquilinear form

bc (w1, w2)= s
Pi $ G1

gi w1 (Pi )w̄2 (Pi ).

(The subscript ‘‘c’’ here and later refers to ‘‘corner’’.) Then bc induces an operator Bc :

Bc : V0H2
G0

(V):V*, bc (v1, v2)= �Bc v1, v2 �V*×V .

Obviously Bc is a symmetric positive semidefinite operator satisfying

�Bc v, v�V*×V e 0, [v $ V.

Let A and B be defined, respectively, as in equations (40) and (44). Then we have the
following theorem.

Theorem 5.2. Let V satisfy [DC]. Define an operator Ac on H=V×H (H=L2(V)),

Ac =$ 0
−A

I
−(B+Bc )%: D(Ac ):H,

D(Ac )=6$w0

w1%=w0, w1$V, −[Aw0 + (Bw1 +Bc w1)] $ H7.

Then Ac is the infinitesimal generator of a C0-semigroup of contractions in H.
Furthermore, for any initial condition (w0, w1) $ D(Ac ), the solution of

d
dt $wẇ%=Ac $wẇ%, tq 0

$w( · , 0)
ẇ( · , 0)%=$w0

w1%, (91)

satisfies

w $ C1([0, a); V)+C2([0, a); H),

Aw+(Bẇ +Bc ẇ) $ C([0, a); H),

ẅ+Aw+(Bẇ+Bc ẇ)=0, tq 0.
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Proof. The arguments are the same as in reference [1] and in section 3.

Remark 5.3. Let us comment on some important regularity issues here. Assume that [DC]
holds, and (f, g) $ H. For given l $ C, consider the resolvent equation

Find (w0, w1) $ D(Ac ) s.t.

(Ac − lI2)$w0

w1%=$f
g% $ H

. (92)

If V does not have corners, then for A as defined in section 4 the solution of

Find (w0, w1) $ D(A),

(A− lI2)$w0

w1%=$f
g% $ H

.

has regularity w0 $ H4(V)+H2
G0

(V), w1 $ H2
G0

(V). This is a consequence of the theory of
classical elliptic boundary value problems. However, for equation (92), by straightforward
variational analysis, it is easy to show that if equation (92) has a unique solution (w0, w1),
and if w0 is sufficiently regular, then w0 and (u, v)=Lw0 satisfy

ux1 x1 +
1+ n

2
vx1 x2 +

1− n

2
ux2 x2 +

n

R
w0x1 =0, on V,

1+ n

2
ux1 x2 +

1− n

2
vx1 x1 + vx2 x2 +

1
R

w0x2 =0, on V,

D$−D2w0 −
12
Rh201

R
w0 + nux1 + vx2 1%− l2w0 = lf+ g, on V,

u=0, v=0, on G0,

B1 (u, v, w0)=0, B2 (u, v, w0)=0, on G1, (93)

$ B1 w0

−B2 w0%− lF& w0

1

1n
w0'=F& f

1

1n
f' on G1,

[Mt (w0) (Pi )]+ lgi w0 (Pi )=−gi f(Pi ), Pi $ G1, (94)

u, v $ H2(V)+H1
G0

(V), w1 = f+ lw0 $ H2
G0

(V).

In order for the pointwise limits of w0 in equation (94) to exist, a sufficient condition
is that w0 $ H3+ o(V) for some o: 0Q oE 1; i.e., the presence of corners causes the loss of
regularity at most of Sobolev space order 1− o. But we also note that for the energy
identity in Lemma 5.5 to work, we need a higher regularity: w $ H7/2+ o(V), for some
o: 0Q oE 1/2.

Solutions of elliptic boundary value problems on (curvilinear) polygonal or Lipschitz
domains are known to lose regularity. For polygonal domains, the most effective method
for studying regularity of solutions was developed by Kondratiev [28]; see also Kondratiev
and Oleinik [29]. More recent results are available in Grisvard [30, 31]. For second order
elliptic problems, we have learned from these references that on convex polygonal domains,
solutions do not lose regularity. But on non-convex polygonal domains, solutions lose
regularity only for a discrete set of angular values.
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Although references [30, 31] did mention some results for fourth order problems, the
boundary conditions therein are of the lower order and thus not directly applicable to our
case of interest here.

The closest relevant reference to the question of regularity in this section may be found
in Blum and Rannacher [32], where they studied the effects of corners on the possible loss
of regularity of (perturbed) biharmonic boundary value problems subject to boundary
conditions involving B1 and B2. Their results seem to suggest a situation analogous to the
second order elliptic case; namely, that on polygonal domains, except for a discrete set of
angular values (see reference [32, Theorem 2, p. 563]), the solutions do not lose any
regularity, and consequently these results offer strong support that there do exist many
domains on which equations (92) or (93) and therefore equations (94) are indeed satisfied
in the pointwise sense. S. Nicaise [33, 34] further extended the work of reference [32] to
interface problems. If the boundary conditions of the polygonal domain are of lower order
(such as the clamped case) treated in Nicaise [33, (5.1)–(5.7), p. 348], for example, then
the regularity is known [33, (6.17), p. 357]. However, if part of the boundary conditions
are of higher order (such as the free case in reference [33, (6.21), p. 359]), then as Nicaise
[33, p. 359] stated, the sharp regularity is still unclear.

We also note that the variational forms for the biharmonic problems on polygonal
domains as give by Nicaise [34, (5.11) et al., p. 178] are somewhat restrictive. The most
general form can be found in Schmidt [35]. Based on his work, Chen, Coleman and Ding
[15] have shown that ‘‘extraneous’’ weak solutions of the biharmonic boundary value
problem occur if additional pointwise constraints are not imposed at the vertices of the
edges where the boundary conditions are free. Those extraneous solutions are not
necessarily singular, as reference [15, Example 4.2] has shown. Such extraneous solutions
will be eliminated by our feedback conditions at the vertices (90).

The occurrence of singular solutions for boundary value problems on non-smooth
domains poses considerable technical difficulty. From the control theory viewpoint, we ask
whether one can design a feedback law that simultaneously eliminates singular solutions
and achieves exponential stabilization? Our work in this section has not yet touched upon
this topic. It constitutes a major challenge for the distributed parameter control theorist.

Remark 5.4. Let us take a closer look at boundary conditions (88)–(90). We first show that

[MT (w) (Pj )]=0, if Pj $ G0.

On G0, we have w= 1w/1n=0. Therefore, on each arc Pj P�
j+1WG0, where Pj , Pj+1 $ G0,

we have

wx1 x1 = n2
1
12w
1n2 , wx1 x2 = n1 n2

12w
1n2 , wx2 x2 = n2

2
12w
1n2 ,

where n=(n1, n2) is the unique outward pointing normal on Pj P�
j+1. We obtain (the

one-sided limit)

MT (w) (P+
i )=D(1− n) · [n1 n2 (wx1 x1 −wx2 x2)− (n2

1 − n2
2 )wx1 x2] =x=P+

i

=D(1− n) · $n1 n2 (n2
1 − n2

2 )012w
1n2 −

12w
1n21%bx=P+

i

=0.

Similarly,

MT (w) (P−
i+1)=0.
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Figure 5. A domain with corners, where G0 and G1 shares two end points which are corner points.

If G0 contains only one corner, say P1, and if G0 is a closed curve (cf. Figure 4),
then instead of considering Pj P�

j+1, we may consider P+
1 P� −

1 , the entire curve of G0

starting from P+
1 , ending at P−

1 , and being traced counterclockwise. Then the above
argument, with slight modification, still gives

MT (w) (P+
1 )=0, MT (w) (P−

1 )=0.

If G0 and G1 share two end points which are corner points (cf. Figure 5), then because
w= 1w/1n=0 on G0, using exactly the same arguments as above, we again obtain
[MT (w) (Pi )]=0 if Pi $ G0 �G1, and if Pi $ G0 +G1, we obtain

either MT (w) (P+
i )=0, or MT (w) (P−

i )=0, (95)

depending on whether P+
i $ G0 or P−

i $ G0, respectively. Let us denote

{Pi1, Pi2}=G0 +G1, where P+
i1 , P−

i2 $ G0, i1, i2 $ {1, 2, . . . , l}.

Then, from equation (90), we obtain

[MT (w) (Pi1)]=MT (w) (P+
i1 )−MT (w) (P−

i1 )

=−MT (w) (P−
i1 )

=−gi1 wt (Pi1) (by equation (95))

=0,

because wt is continuous on 1V and 0=wt (P+
i1 )=wt (P−

i ). Similarly,

[MT (w) (Pi2)]=0.

Lemma 5.5. (energy identity for domains with corners). Let V satisfy [DC]. Let
w $ H7/2+ o(V) and let u, v $ H3/2+ o(V) for some small oq 0. Assume that w= 1w/1n=0
and u= v=0 on G0. Then

Re gV

A&uvw' · &x · 9ū
x · 9v̄
x · 9w̄' dx= s

10

j=0

Tj ,
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where Tj , j=0, 1, 2, . . . , 9, ae the same as in equation (55), and

T10 0−Re s
Pj $ G1 :G0

[MT (w) (Pj )] · (x · 9w̄) =x=Pj .

Proof. Using Lemmas 3.1 and 5.1 first, we obtain

gV

A&uvw' · &x · 9ū
x · 9v̄
x · 9w̄' dx=a2&uvw' · &x · 9ū

x · 9v̄
x · 9w̄'3

−g1V 6B1 (u, v, w) · (x · 9ū)+B2 (u, v, w) · (x · 9v̄)}

−(B1 w) (x · 9w̄)+ (B2 w)
1

1n
(x · 9w̄)7 ds

− s
Pj $ G1 :G0

[MT (w) (Pj )] · (x · 9w̄) =x=Pj
. (96)

Under the given regularity assumptions on u, v and w, the treatment of the RHS of
equation (96) (except for the last sum, T10), is exactly the same as in the proof of Lemma
4.2. Therefore the proof is complete.

To make it possible to establish an exponential decay theorem using the frequency
domain method as in section 5, we need a regularity assumption on the solution of the
resolvent equation as follows.

[R] Let V satisfy [DC]. Let (f, g) $ H. Let (w0, w1) $ D(Ac ) satisfy

(lI−Ac )$w0

w1%=$f
g% in H,

for some l $ C, and let (u, v)=Lw0. Then w0 $ H7/2+ o(V), u, v $ H3/2+ o, for some oq 0.
With the help of [R], we can now achieve our final result.

Main Theorem 2. (uniform exponential decay of energy of Donnell’s shallow shell on
domains with corners). Assume [R] as well as conditions (i), (ii) and (iii) in Main Theorem
1. Let (w, wt ) be the solution of equation (91) with initial state (w0, w1) $ H. Then there
exist two positive constants C and m, independent of (w0, w1) $ H, such that

E(t)EC e−mtE(0).

Furthermore, if equation (65) holds and if gi =0 in equation (90) for all gi , then assumption
(iii) can be weakened to x ·ne 0 on G1.

Proof. Assumption [R] takes care of all the required smoothness in energy multiplier
manipulations, and we will be able to give a proof in pretty much the same way as that
of Main Theorem 1; we need only watch the minor differences. First, note that equation
(70) now becomes
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b� gG1

=zp =2 ds+ s
Pj $ G1 �G0

gj =zp (Pj ) =2

EgG1
$zp

1

1n
zp%F& z̄p

1

1n
z̄p' ds+ s

Pj $ G1 �G0

gj zp (Pj )z̄p (Pj )

= �(B+Bc )zp , zp �V*×V =Re W−A$wp

zp%, $wp

zp%wH

=· · ·

= o(1).

Therefore, under assumption (61), we have equation (71) further strengthened to

>zp >L2(G1) = o(1), B 1

1n
zp BL2(G1)

= o(1), >Bzp >V* = o(1),

=zp (Pj ) == o(1), for Pj $ Gj �G0, if gj q 0. (97)

Next, observe that equation (73) becomes

−v2
p >wp >2

H +Mwp , wp m− s
Pj $ G1 �G0

[MT (wp ) (Pj )]w̄p (Pj )

= ivp �fp , wp �H − �Bzp , wp �V*×V + �gp , wp �H . (98)

The third term on the LHS of equation (98), by equation (94) with l=iv, f= fp and
w0 =wp therein, is equal to

− s
pj $ G1 �G0

[MT (wp ) (Pj )]w̄p (Pj )= s
Pj $ G1 �G0

ivp gj =wp (Pj ) =2 + s
Pj $ G1 �G0

gj f(Pj )w̄p (Pj ). (99)

We rewrite equation (98) using equation (99) to obtain

−v2
p >wp >2

H +Mwp , wp m+i s
Pj $ G1 �G0

gj vj =wp (Pj ) =2

=− s
Pj $ G1 �G0

gj fp (Pj )w̄p (Pj )+RHS of equation (73). (100)

We can prove that the RHS of equation (98) is o(1) by using the same argument as in
equation (73)–(77) and the Trace Theorem. Therefore, by taking the real and imaginary
parts of the LHS of equation (100), we obtain

−v2
p >wp >2

H +Mwp , wp m= o(1), s
Pj $ G1 �G0

gp vp =wp (Pj ) =2 = o(1). (101)
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Third, note by Lemma 5.5 that equation (80) is now modified to

Re gV

Ajp · &x · 9ūp

x · 9v̄p

x · 9w̄p' dx=RHS of (80)+T10 (p). (102)

But

T10 (p)=−Re s
Pj $ G1 �G0

[MT (wp ) (Pj )] · (x · 9w̄p ) =x=Pj

=Re $ivp s
Pj $ G1 �G0

gj wp (Pj ) · (x · 9w̄p ) =x=Pj

+ s
Pj $ G1 �G0

gj fp (Pj ) · (x · 9w̄p ) =x=Pj %. (103)

Using equation (69)1, we have

s
Pj $ G1 �G0

v2
p =wp (Pj ) =2 E 2 s

Pj $ G1 �G0

[=zp (Pj ) =2 + = fp (Pj ) =2]= o(1),

similarly as in equation (78), by the second line of equation (97) and the Trace Theorem.
Therefore we can now estimate both sums on the RHS of equation (103) as follows:

bivp s gj wp (Pj ) · (x · 9w̄p )x=Pj bE 1
2a

s v2
p =wp (Pj ) =2 +

a

2
s = (x · 9w)x=Pj =2

E o(1)+ a'T7 (p)+ a0Mwp , wp m, (104)

bs gj fp (Pj ) · (x · 9w̄p )x=Pj bE 1
2a

s = fp (Pj ) =2 +
a

2
s = (x · 9w)x=Pj =2

E o(1)+ a'T7 (p)+ a0Mwp , wp m, (105)

for some sufficiently small positive a, a' and a0. Therefore the RHS of equations (104) and
(105) can be absorbed just as in equations (82)–(85).

The rest of the proof follows as in that of Main Theorem 1.
It goes without saying that an analogue of Corollary 4.3 can also be stated.
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